Inputs and Readers
[TOC]
Placeholders
For feeding SparseTensor
s which are composite type,
there is a convenience function:
Readers
tf.ReaderBase
tf.TextLineReader
tf.WholeFileReader
tf.IdentityReader
tf.TFRecordReader
tf.FixedLengthRecordReader
Converting
TensorFlow provides several operations that you can use to convert various data
formats into tensors.
Example protocol buffer
tf.VarLenFeature
tf.FixedLenFeature
tf.FixedLenSequenceFeature
tf.SparseFeature
tf.parse_example
tf.parse_single_example
tf.parse_tensor
tf.decode_json_example
Queues
Conditional Accumulators
Dealing with the filesystem
Input pipeline
Beginning of an input pipeline
The "producer" functions add a queue to the graph and a corresponding
QueueRunner
for running the subgraph that fills that queue.
tf.train.match_filenames_once
tf.train.limit_epochs
tf.train.input_producer
tf.train.range_input_producer
tf.train.slice_input_producer
tf.train.string_input_producer
Batching at the end of an input pipeline
These functions add a queue to the graph to assemble a batch of
examples, with possible shuffling. They also add a QueueRunner
for
running the subgraph that fills that queue.