Inputs and Readers
[TOC]
Placeholders
For feeding SparseTensors which are composite type,
there is a convenience function:
Readers
tf.ReaderBasetf.TextLineReadertf.WholeFileReadertf.IdentityReadertf.TFRecordReadertf.FixedLengthRecordReader
Converting
TensorFlow provides several operations that you can use to convert various data
formats into tensors.
Example protocol buffer
tf.VarLenFeaturetf.FixedLenFeaturetf.FixedLenSequenceFeaturetf.SparseFeaturetf.parse_exampletf.parse_single_exampletf.parse_tensortf.decode_json_example
Queues
Conditional Accumulators
Dealing with the filesystem
Input pipeline
Beginning of an input pipeline
The "producer" functions add a queue to the graph and a corresponding
QueueRunner for running the subgraph that fills that queue.
tf.train.match_filenames_oncetf.train.limit_epochstf.train.input_producertf.train.range_input_producertf.train.slice_input_producertf.train.string_input_producer
Batching at the end of an input pipeline
These functions add a queue to the graph to assemble a batch of
examples, with possible shuffling. They also add a QueueRunner for
running the subgraph that fills that queue.